Model Examination paper-I

1(i)Consider a random experiment with three possible outcomes with probabilities p_{1}, p_{2}, p_{3} respectively. Suppose the above experiment is repeated m times in an independent fashion and $X_{i}, i=1,2,3$ denote the number of times $i_{\text {th }}$ outcome occurs.
(a) What is the pmf of $X_{1}+X_{2}$?
(b) Find $P\left[X_{2}=y \mid X_{1}+X_{2}=z\right], y=0,1, \ldots, z, z=0,1, \ldots, m$. [6]

1(ii) Let a point be chosen uniformly from the interval $[0, a], a>1$. Let X denote the distance of the point chosen from 0 and $Y=\min \left\{X, \frac{a}{2}\right\}$. Find the distribution of Y. [4]

2(i) Define a σ-field. Give examples of two σ-fields are which are not independent. [4]

2(ii) Let $A, B, C \in \mathcal{F}$ be independent events in a probability space (Ω, \mathcal{F}, P). Prove or disprove the following. $\sigma(A)$ is independent of $\sigma(\{B, C\})$. [6]

3(i) Let X be a standard normal random variable. Find

$$
\begin{equation*}
E\left[\int_{0}^{\infty} \frac{\sin (t X)}{t} d t\right] \tag{5}
\end{equation*}
$$

3(ii) Let ϕ_{1} and ϕ_{2} be characteristic functions. Define ϕ_{3} and ϕ_{4} as follows.

$$
\phi_{3}=\phi_{1} \phi_{2}, \phi_{4}=\phi_{1}+\phi_{2}
$$

Show that $\phi 3$ is a characteristic function and ϕ_{4} is not a characteristic function. [5]
4. Let $X_{n} \rightarrow X$ in probability.
(i) Show that $\left|X_{n}\right| \rightarrow|X|$ in probability. [5]
(ii) Is it true that $\max \left\{X_{n}, 0\right\} \rightarrow \max \{X, 0\}$ converges in probability? Justify your answer. [5]

5(i) State strong law of large numbers.

5(ii) Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
P\left\{X_{n}=3^{n}\right\}=P\left\{X_{n}=-3^{n}\right\}=\frac{1}{2}, n \neq 1
$$

Show that $\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$ does not converge to 0 . Does this contradicts strong law of large number? [7]

